For 𝑠 \in (0, 1) small, we show that the only cones in R2 stationary for the 𝑠-perimeter and stable in R2 ⧵ {0} are half-planes. This is in direct contrast with the case of the classical perimeter or the regime 𝑠 close to 1, where nontrivial cones as {𝑥𝑦 > 0} \subset R2 are stable for inner variations.

Stable 𝑠-minimal cones in R2 are flat for 𝑠 ∼ 0

Caselli, Michele
2025

Abstract

For 𝑠 \in (0, 1) small, we show that the only cones in R2 stationary for the 𝑠-perimeter and stable in R2 ⧵ {0} are half-planes. This is in direct contrast with the case of the classical perimeter or the regime 𝑠 close to 1, where nontrivial cones as {𝑥𝑦 > 0} \subset R2 are stable for inner variations.
2025
Settore MATH-03/A - Analisi matematica
Nonlocal minimal surfaces; Fractional perimeter; Cones; Stability; Hardy’s inequality
File in questo prodotto:
File Dimensione Formato  
Stability_of_s_min_cones_dim_2__Nonlinear_Analysis_-3.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative Commons
Dimensione 378.14 kB
Formato Adobe PDF
378.14 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/153203
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex 0
social impact