The precise characterization and mitigation of systematic effects is one of the biggest roadblocks impeding the detection of the fluctuations of cosmological 21 cm signals. Missing data in radio cosmological experiments, often due to radio frequency interference (RFI), pose a particular challenge to power spectrum analysis as this could lead to the ringing of bright foreground modes in the Fourier space, heavily contaminating the cosmological signals. Here we show that the problem of missing data becomes even more arduous in the presence of systematic effects. Using a realistic numerical simulation, we demonstrate that partially flagged data combined with systematic effects can introduce significant foreground ringing. We show that such an effect can be mitigated through inpainting the missing data. We present a rigorous statistical framework that incorporates the process of inpainting missing data into a quadratic estimator of the 21 cm power spectrum. Under this framework, the uncertainties associated with our inpainting method and its impact on power spectrum statistics can be understood. These results are applied to the latest Phase II observations taken by the Hydrogen Epoch of Reionization Array, forming a crucial component in power spectrum analyses as we move toward detecting 21 cm signals in the ever more noisy RFI environment.

Impacts and Statistical Mitigation of Missing Data on the 21 cm Power Spectrum : A Case Study with the Hydrogen Epoch of Reionization Array

Liu A.;Hewitt J. N.;Bernardi G.;Bull P.;Mesinger A.;Qin Y.;
2025

Abstract

The precise characterization and mitigation of systematic effects is one of the biggest roadblocks impeding the detection of the fluctuations of cosmological 21 cm signals. Missing data in radio cosmological experiments, often due to radio frequency interference (RFI), pose a particular challenge to power spectrum analysis as this could lead to the ringing of bright foreground modes in the Fourier space, heavily contaminating the cosmological signals. Here we show that the problem of missing data becomes even more arduous in the presence of systematic effects. Using a realistic numerical simulation, we demonstrate that partially flagged data combined with systematic effects can introduce significant foreground ringing. We show that such an effect can be mitigated through inpainting the missing data. We present a rigorous statistical framework that incorporates the process of inpainting missing data into a quadratic estimator of the 21 cm power spectrum. Under this framework, the uncertainties associated with our inpainting method and its impact on power spectrum statistics can be understood. These results are applied to the latest Phase II observations taken by the Hydrogen Epoch of Reionization Array, forming a crucial component in power spectrum analyses as we move toward detecting 21 cm signals in the ever more noisy RFI environment.
2025
Settore PHYS-05/A - Astrofisica, cosmologia e scienza dello spazio
Observational cosmology; Radio interferometry; H I line emission
   Illuminating the darkness with precision maps of neutral hydrogen across cosmic time
   MapItAll
   European Commission
   Horizon 2020 Framework Programme
   948764
File in questo prodotto:
File Dimensione Formato  
Chen_2025_ApJ_979_191.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative Commons
Dimensione 2.6 MB
Formato Adobe PDF
2.6 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/153463
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex 0
social impact