We study the influence of single-atom dissipation and dephasing noise on the performance of Dicke and Tavis-Cummings quantum batteries, where the electromagnetic field of the cavity hosting the system acts as a charger. For these models a genuine charging process can only occur in the transient regime. Indeed, unless the interaction with the environment is cut off, the asymptotic energy of the battery is solely determined by the environment and does not depend on the initial energy of the electromagnetic field. We numerically estimate the fundamental figures of merit for the model, including the time at which the battery reaches its maximum ergotropy, the average energy, and the energy that needs to be used to switch the battery-charger interaction on and off. Depending on the scaling of the coupling between the battery and the charger, we show that the model can still exhibit a subextensive charging time. However, for the Dicke battery, this effect comes with a higher cost when switch...

Single-atom dissipation and dephasing in Dicke and Tavis-Cummings quantum batteries

Canzio, Andrea
;
Cavina, Vasco;Polini, Marco;Giovannetti, Vittorio
2025

Abstract

We study the influence of single-atom dissipation and dephasing noise on the performance of Dicke and Tavis-Cummings quantum batteries, where the electromagnetic field of the cavity hosting the system acts as a charger. For these models a genuine charging process can only occur in the transient regime. Indeed, unless the interaction with the environment is cut off, the asymptotic energy of the battery is solely determined by the environment and does not depend on the initial energy of the electromagnetic field. We numerically estimate the fundamental figures of merit for the model, including the time at which the battery reaches its maximum ergotropy, the average energy, and the energy that needs to be used to switch the battery-charger interaction on and off. Depending on the scaling of the coupling between the battery and the charger, we show that the model can still exhibit a subextensive charging time. However, for the Dicke battery, this effect comes with a higher cost when switch...
2025
Settore PHYS-04/A - Fisica teorica della materia, modelli, metodi matematici e applicazioni
Open quantum systems; Open quantum systems & decoherence; Quantum thermodynamics; Dicke model; Lindblad equation; Tavis-Cummings model
   NATIONAL QUANTUM SCIENCE AND TECHNOLOGY INSTITUTE (NQSTI) Partenariato Esteso (PE0000023)
   NQSTI
   MUR
   PNRR
   PE0000023
File in questo prodotto:
File Dimensione Formato  
PhysRevA.111.022222.pdf

Accesso chiuso

Tipologia: Published version
Licenza: Tutti i diritti riservati
Dimensione 1.07 MB
Formato Adobe PDF
1.07 MB Adobe PDF   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/153503
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex 0
social impact