We determine the current exchange amplitudes for free totally symmetric tensor fields ϕμ1...μs of mass M in a d-dimensional dS space, extending the results previously obtained for s = 2 by other authors. Our construction is based on an unconstrained formulation where both the higher-spin gauge fields and the corresponding gauge parameters Λμ1...μs−1 are not subject to Fronsdal’s trace constraints, but compensator fields αμ1...μs−3 are introduced fors >2. The free massive dS equations can be fully determined by a radial dimensional reduction from a (d+1)-dimensionalMinkowski space time, and lead for all spins to relatively handy closed-form expressions for the exchange amplitudes, where the external currents are conserved, both in d and in (d +1) dimensions, but are otherwise arbitrary. As for s = 2, these amplitudes are rational functions of (ML)2, where L is the dS radius. In general they are related to the hypergeometric functions 3F2(a, b, c; d, e; z), and their poles identify a subset of the “partially-massless” discrete states, selected by the condition that the gauge transformations of the corresponding fields contain some non-derivative terms. Corresponding results for AdS spaces can be obtained from these by a formal analytic continuation, while the massless limit is smooth, with no van Dam–Veltman–Zakharov discontinuity.

(A)dS current exchanges and partially massless higher spins

FRANCIA, DARIO;SAGNOTTI, AUGUSTO
2008

Abstract

We determine the current exchange amplitudes for free totally symmetric tensor fields ϕμ1...μs of mass M in a d-dimensional dS space, extending the results previously obtained for s = 2 by other authors. Our construction is based on an unconstrained formulation where both the higher-spin gauge fields and the corresponding gauge parameters Λμ1...μs−1 are not subject to Fronsdal’s trace constraints, but compensator fields αμ1...μs−3 are introduced fors >2. The free massive dS equations can be fully determined by a radial dimensional reduction from a (d+1)-dimensionalMinkowski space time, and lead for all spins to relatively handy closed-form expressions for the exchange amplitudes, where the external currents are conserved, both in d and in (d +1) dimensions, but are otherwise arbitrary. As for s = 2, these amplitudes are rational functions of (ML)2, where L is the dS radius. In general they are related to the hypergeometric functions 3F2(a, b, c; d, e; z), and their poles identify a subset of the “partially-massless” discrete states, selected by the condition that the gauge transformations of the corresponding fields contain some non-derivative terms. Corresponding results for AdS spaces can be obtained from these by a formal analytic continuation, while the massless limit is smooth, with no van Dam–Veltman–Zakharov discontinuity.
2008
Higher Spins; AdS exchanges; Partially Massless Fields
File in questo prodotto:
File Dimensione Formato  
NUPHB_11220.pdf

Accesso chiuso

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 486.94 kB
Formato Adobe PDF
486.94 kB Adobe PDF   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/1541
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 46
  • OpenAlex ND
social impact