Context. Ionized bubble sizes during reionization trace physical properties of the first galaxies. JWST's ability to spectroscopically confirm and measure Lyman-alpha (Lyα) emission in sub-L* galaxies makes it possible to map to map ionized bubbles in 3D. However, existing Lyα-based bubble measurement strategies rely on constraints from single galaxies, which are limited by the large variability in intrinsic Lyα emission. Aims. As a first step, we present two bubble-size-estimation methods using Lyα spectroscopy of ensembles of galaxies, enabling us to map ionized structures and marginalize over Lyα emission variability. We tested our methods using gigaparsec-scale reionization simulations of the intergalactic medium (IGM). Methods. To map bubbles in the plane of the sky, we developed an edge detection method based on the asymmetry of Lyα transmission as a function of spatial position. To map bubbles along the line of sight, we develop an algorithm using the tight relation between Lyα transmission and the line-of-sight distance from galaxies to the nearest neutral IGM patch. Results. Both methods can robustly recover bubbles with a radius ≳10 comoving Mpc, sufficient for mapping bubbles even in the early phases of reionization, when the IGM is ∼70-90% neutral. These methods require ≳0.002-0.004 galaxies/cMpc3, a 5σ Lyα equivalent width upper limit of ≲30 A for the faintest targets, and redshift precision Δz≲0.015, which is feasible with JWST spectroscopy. Shallower observations will provide robust lower limits on bubble sizes. Additional constraints on IGM transmission from Lyα escape fractions and line profiles will further refine these methods, paving the way to our first direct understanding of ionized bubble growth.

Mapping reionization bubbles in JWST era: I. Empirical edge detection with Lyman alpha emission from galaxies

Mesinger, Andrei;Prelogović, David;Nikolić, Ivan
;
Gagnon-Hartman, Samuel;Qin, Yuxiang;
2025

Abstract

Context. Ionized bubble sizes during reionization trace physical properties of the first galaxies. JWST's ability to spectroscopically confirm and measure Lyman-alpha (Lyα) emission in sub-L* galaxies makes it possible to map to map ionized bubbles in 3D. However, existing Lyα-based bubble measurement strategies rely on constraints from single galaxies, which are limited by the large variability in intrinsic Lyα emission. Aims. As a first step, we present two bubble-size-estimation methods using Lyα spectroscopy of ensembles of galaxies, enabling us to map ionized structures and marginalize over Lyα emission variability. We tested our methods using gigaparsec-scale reionization simulations of the intergalactic medium (IGM). Methods. To map bubbles in the plane of the sky, we developed an edge detection method based on the asymmetry of Lyα transmission as a function of spatial position. To map bubbles along the line of sight, we develop an algorithm using the tight relation between Lyα transmission and the line-of-sight distance from galaxies to the nearest neutral IGM patch. Results. Both methods can robustly recover bubbles with a radius ≳10 comoving Mpc, sufficient for mapping bubbles even in the early phases of reionization, when the IGM is ∼70-90% neutral. These methods require ≳0.002-0.004 galaxies/cMpc3, a 5σ Lyα equivalent width upper limit of ≲30 A for the faintest targets, and redshift precision Δz≲0.015, which is feasible with JWST spectroscopy. Shallower observations will provide robust lower limits on bubble sizes. Additional constraints on IGM transmission from Lyα escape fractions and line profiles will further refine these methods, paving the way to our first direct understanding of ionized bubble growth.
2025
Settore FIS/05 - Astronomia e Astrofisica
Settore PHYS-05/A - Astrofisica, cosmologia e scienza dello spazio
Dark ages, reionization, first stars; Intergalactic medium
File in questo prodotto:
File Dimensione Formato  
aa52912-24.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative Commons
Dimensione 2.38 MB
Formato Adobe PDF
2.38 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/154566
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
  • OpenAlex 7
social impact