Astrophysical observations provide compelling evidence for gravitationally interacting dark matter in the universe that cannot be explained by the standard model of particle physics. The extraordinary amount of data from the CERN LHC presents a unique opportunity to shed light on the nature of dark matter at unprecedented collision energies. This Report comprehensively reviews the most recent searches with the CMS experiment for particles and interactions belonging to a dark sector and for dark-sector mediators. Models with invisible massive particles are probed by searches for signatures of missing transverse momentum recoiling against visible standard model particles. Searches for mediators are also conducted via fully visible final states. The results of these searches are compared with those obtained from direct-detection experiments. Searches for alternative scenarios predicting more complex dark sectors with multiple new particles and new forces are also presented. Many of these models include long-lived particles, which could manifest themselves with striking unconventional signatures with relatively small amounts of background. Searches for such particles are discussed and their impact on dark-sector scenarios is evaluated. Many results and interpretations have been newly obtained for this Report.

Dark sector searches with the CMS experiment

Cristina Andreea Alexe;Davide Bruschini;
2025

Abstract

Astrophysical observations provide compelling evidence for gravitationally interacting dark matter in the universe that cannot be explained by the standard model of particle physics. The extraordinary amount of data from the CERN LHC presents a unique opportunity to shed light on the nature of dark matter at unprecedented collision energies. This Report comprehensively reviews the most recent searches with the CMS experiment for particles and interactions belonging to a dark sector and for dark-sector mediators. Models with invisible massive particles are probed by searches for signatures of missing transverse momentum recoiling against visible standard model particles. Searches for mediators are also conducted via fully visible final states. The results of these searches are compared with those obtained from direct-detection experiments. Searches for alternative scenarios predicting more complex dark sectors with multiple new particles and new forces are also presented. Many of these models include long-lived particles, which could manifest themselves with striking unconventional signatures with relatively small amounts of background. Searches for such particles are discussed and their impact on dark-sector scenarios is evaluated. Many results and interpretations have been newly obtained for this Report.
2025
Settore PHYS-01/A - Fisica sperimentale delle interazioni fondamentali e applicazioni
BSM; CMS; Dark matter; Dark sectors
   Advanced Multi-Variate Analysis for New Physics Searches at the LHC
   AMVA4NewPhysics
   European Commission
   Horizon 2020 Framework Programme
   675440

   Search for Higgs bosons decaying to charm quarks
   HIGCC
   European Commission
   Horizon 2020 Framework Programme
   724704

   Enswarm
   UK Research and Innovation
   Innovate UK
   752730

   Majorana neutrino discovery strategy with CMS
   MajorNet
   European Commission
   Horizon 2020 Framework Programme
   758316

   International Training Network for Statistics in High Energy Physics and Society
   INSIGHTS
   European Commission
   Horizon 2020 Framework Programme
   765710

   The strong interaction at the frontier of knowledge: fundamental research and applications
   STRONG-2020
   European Commission
   Horizon 2020 Framework Programme
   824093

   INnovative TRiggEr techniques for beyond the standard model PhysIcs Discovery at the LHC
   INTREPID
   European Commission
   Horizon Europe Framework Programme
   101115353

   Fundamental properties and time-scan of QCD matter at high densities and temperature exposed by jet substructure in heavy ion collisions with CMS experiment at the LHC
   QCDHighDensityCMS
   European Commission
   Horizon 2020 Framework Programme
   101002207
File in questo prodotto:
File Dimensione Formato  
Dark_sector_searches_with_the_CMS_experiment_2025.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative Commons
Dimensione 5.17 MB
Formato Adobe PDF
5.17 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/154891
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex 14
social impact