The LHC has provided an unprecedented amount of proton–proton collision data, bringing forth exciting opportunities to address fundamental open questions in particle physics. These questions can potentially be answered by performing searches for very rare processes predicted by models that attempt to extend the standard model of particle physics. The data collected by the CMS experiment in 2015–2018 at a center-of-mass energy of 13TeV can be used to test the standard model with high precision and potentially uncover evidence for new particles or interactions. An interesting possibility is the existence of new fermions with masses ranging from the MeV to the TeV scale. Such new particles appear in many possible extensions of the standard model and are well motivated theoretically. New fermions may explain the appearance of three generations of leptons and quarks, the mass hierarchy across these generations, and the nonzero neutrino masses. In this report, the results of searches targeting vector-like quarks, vector-like leptons, and heavy neutral leptons at the CMS experiment are summarized. The complementarity of current searches for each type of new fermion is discussed, and combinations of several searches for vector-like quarks are presented. The discovery potential for some of these searches at the High-Luminosity LHC is also discussed.

Review of searches for vector-like quarks, vector-like leptons, and heavy neutral leptons in proton–proton collisions at √s=13 TeV at the CMS experiment

Cristina Andreea Alexe;Davide Bruschini;
2025

Abstract

The LHC has provided an unprecedented amount of proton–proton collision data, bringing forth exciting opportunities to address fundamental open questions in particle physics. These questions can potentially be answered by performing searches for very rare processes predicted by models that attempt to extend the standard model of particle physics. The data collected by the CMS experiment in 2015–2018 at a center-of-mass energy of 13TeV can be used to test the standard model with high precision and potentially uncover evidence for new particles or interactions. An interesting possibility is the existence of new fermions with masses ranging from the MeV to the TeV scale. Such new particles appear in many possible extensions of the standard model and are well motivated theoretically. New fermions may explain the appearance of three generations of leptons and quarks, the mass hierarchy across these generations, and the nonzero neutrino masses. In this report, the results of searches targeting vector-like quarks, vector-like leptons, and heavy neutral leptons at the CMS experiment are summarized. The complementarity of current searches for each type of new fermion is discussed, and combinations of several searches for vector-like quarks are presented. The discovery potential for some of these searches at the High-Luminosity LHC is also discussed.
2025
Settore PHYS-01/A - Fisica sperimentale delle interazioni fondamentali e applicazioni
CMS; HNL; VLL; VLQ
   Advanced Multi-Variate Analysis for New Physics Searches at the LHC
   AMVA4NewPhysics
   European Commission
   Horizon 2020 Framework Programme
   675440

   Search for Higgs bosons decaying to charm quarks
   HIGCC
   European Commission
   Horizon 2020 Framework Programme
   724704

   Direct and indirect searches for new physics in events with top quarks using LHC proton-proton collisions at the CMS detector
   LHCTOPVLQ
   European Commission
   Horizon 2020 Framework Programme
   752730

   Majorana neutrino discovery strategy with CMS
   MajorNet
   European Commission
   Horizon 2020 Framework Programme
   758316

   International Training Network for Statistics in High Energy Physics and Society
   INSIGHTS
   European Commission
   Horizon 2020 Framework Programme
   765710

   The strong interaction at the frontier of knowledge: fundamental research and applications
   STRONG-2020
   European Commission
   Horizon 2020 Framework Programme
   824093

   INnovative TRiggEr techniques for beyond the standard model PhysIcs Discovery at the LHC
   INTREPID
   European Commission
   Horizon Europe Framework Programme
   101115353

   Fundamental properties and time-scan of QCD matter at high densities and temperature exposed by jet substructure in heavy ion collisions with CMS experiment at the LHC
   QCDHighDensityCMS
   European Commission
   Horizon 2020 Framework Programme
   101002207
File in questo prodotto:
File Dimensione Formato  
Review_searches_for_vector_2025.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative Commons
Dimensione 6.71 MB
Formato Adobe PDF
6.71 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/154893
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex 22
social impact