Due to their sensitivity to temperature variations, normal metal–insulator-superconductor (NIS) junctions are utilized in various thermal devices. This study illustrates that two NISIN reservoirs can achieve a measurable negative differential thermal conductance (NDTC). This phenomenon is enabled by photon-mediated heat exchange, which is profoundly affected by the temperature-dependent impedance matching between the reservoirs. Under suitable configurations, the heat current is suppressed for increasingly large temperature gradients, resulting in NDTC. We also propose experimental configurations that allow for the unambiguous discrimination of this effect. We employ superconducting aluminum in conjunction with either silver or epitaxial InAs to facilitate the experimental observation of NDTC at low temperatures over significant sub-Kelvin ranges. This advances the development of devices that exploit NDTC to enhance the regulation of heat and temperature in cryogenic environments, such as thermal switches, transistors, and amplifiers.

Photonic negative differential thermal conductance enabled by NIS junctions

Pioldi, Matteo
;
De Simoni, Giorgio;Braggio, Alessandro;Giazotto, Francesco
2025

Abstract

Due to their sensitivity to temperature variations, normal metal–insulator-superconductor (NIS) junctions are utilized in various thermal devices. This study illustrates that two NISIN reservoirs can achieve a measurable negative differential thermal conductance (NDTC). This phenomenon is enabled by photon-mediated heat exchange, which is profoundly affected by the temperature-dependent impedance matching between the reservoirs. Under suitable configurations, the heat current is suppressed for increasingly large temperature gradients, resulting in NDTC. We also propose experimental configurations that allow for the unambiguous discrimination of this effect. We employ superconducting aluminum in conjunction with either silver or epitaxial InAs to facilitate the experimental observation of NDTC at low temperatures over significant sub-Kelvin ranges. This advances the development of devices that exploit NDTC to enhance the regulation of heat and temperature in cryogenic environments, such as thermal switches, transistors, and amplifiers.
2025
Settore PHYS-03/A - Fisica sperimentale della materia e applicazioni
Thermal transport; Superconductors; Tunnel junctions
   Gate Tuneable Superconducting Quantum Electronics.
   SuperGate
   European Commission
   Horizon 2020 Framework Programme
   964398

   SuPErConducTing Radio-frequency switch for qUantuM technologies
   SPECTRUM
   European Commission
   Horizon Europe Framework Programme
   101057977

   National Quantum Science and Technology Institute
   NQSTI
   Ministero dell'Università e delle Ricerca (MUR)
   Piano Nazionale di RIpresa e Resilienza (PNRR)
   PE0000023

   Non-equilibrium coherent thermal effects in quantum systems
   NEThEQS
   Unione Europea-Next Generation EU
   Fondo per il Programma Nazionale di Ricerca e Progetti di Rilevante Interesse Nazionale (PRIN)
   2022B9P8LN-(PE3)

   QTHERMONANO
   Centro Nazione delle Ricerche (CNR)
  
     https://zenodo.org/records/15642201
     https://dx.doi.org/10.5281/zenodo.15642201
File in questo prodotto:
File Dimensione Formato  
APL25-AR-02660.pdf

accesso aperto

Tipologia: Accepted version (post-print)
Licenza: Non specificata
Dimensione 742.01 kB
Formato Adobe PDF
742.01 kB Adobe PDF
263505_1_5.0272034.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative Commons
Dimensione 1.48 MB
Formato Adobe PDF
1.48 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/155164
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex 0
social impact