We investigate the distribution and clustering of extreme events of stochastic processes constructed by sampling the solution of a Stochastic Differential Equation on Rn. We do so by studying the action of an annealead transfer operators on a suitable spaces of densities. The spec- tral properties of such operators are obtained by employing a mixture of techniques coming from SDE theory and a functional analytic approach to dynamical systems.

Extreme Value theory and Poisson statistics for discrete time samplings of stochastic differential equations

Flandoli, Franco;Galatolo, Stefano;Giulietti, Paolo;Vaienti, Sandro
In corso di stampa

Abstract

We investigate the distribution and clustering of extreme events of stochastic processes constructed by sampling the solution of a Stochastic Differential Equation on Rn. We do so by studying the action of an annealead transfer operators on a suitable spaces of densities. The spec- tral properties of such operators are obtained by employing a mixture of techniques coming from SDE theory and a functional analytic approach to dynamical systems.
In corso di stampa
Settore MAT/06 - Probabilita' e Statistica Matematica
Settore MATH-03/B - Probabilità e statistica matematica
Stochastic differential equations, extreme value theory, transfer operator, regularization by noise, perturbative spectral theory
   Noise in Fluids
   NoisyFluid
   European Commission
   101053472
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/155344
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact