Cosmological correlators encode statistical properties of the initial conditions of our universe. Mathematically, they can often be written as Mellin integrals of a certain rational function associated to graphs, namely the flat space wavefunction. The singularities of these cosmological integrals are parameterized by binary hyperplane arrangements. Using different algebraic tools, we shed light on the differential and difference equations satisfied by these integrals. Moreover, we study a multivariate version of partial fractioning of the flat space wavefunction, and propose a graphbased algorithm to compute this decomposition.

Algebraic Approaches To Cosmological Integrals

Fevola, C.;Leite Pimentel, G.;Sattelberger, A. L.;Westerdijk, T.
2025

Abstract

Cosmological correlators encode statistical properties of the initial conditions of our universe. Mathematically, they can often be written as Mellin integrals of a certain rational function associated to graphs, namely the flat space wavefunction. The singularities of these cosmological integrals are parameterized by binary hyperplane arrangements. Using different algebraic tools, we shed light on the differential and difference equations satisfied by these integrals. Moreover, we study a multivariate version of partial fractioning of the flat space wavefunction, and propose a graphbased algorithm to compute this decomposition.
2025
Settore PHYS-02/A - Fisica teorica delle interazioni fondamentali, modelli, metodi matematici e applicazioni
Weyl Algebra; GKZ Systems; Partial Fraction Decomposition; Shift Relations; Cosmological Correlators
   MUR Programma per giovani ricercatori R.L. Montalcini, bando 2019: Il Bootstrap Cosmologico -- Scoprire la semplicità nelle condizioni iniziali dell'universo. [FFO 2019]
   MUR_DM-1152-21
   Ministero della pubblica istruzione, dell'università e della ricerca

   No time for cosmology: Decoding dynamics from static cosmological correlations
   NOTIMEFORCOSMO
   European Commission
   Grant Agreement n. 101126304
File in questo prodotto:
File Dimensione Formato  
PAPER_11_OJS_2738.pdf

accesso aperto

Tipologia: Accepted version (post-print)
Licenza: Creative Commons
Dimensione 286 kB
Formato Adobe PDF
286 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/156403
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
  • OpenAlex 0
social impact