METTL9 is an enzyme catalysing N1-methylation of histidine residues (1MH) within eukaryotic proteins. Given its high expression in vertebrate nervous system and its potential association with neurodevelopmental delay, we dissected Mettl9 role during neural development. We generated three distinct mouse embryonic stem cell lines: a complete Mettl9 knock-out (KO), an inducible METTL9 Degron and a line endogenously expressing a catalytically inactive protein, and assessed their ability to undergo neural differentiation. In parallel, we down-regulated mettl9 in Xenopus laevis embryos and characterised their neural development. Our multi-omics data indicate that METTL9 exerts a conserved role in sustaining vertebrate neurogenesis. This is largely independent of its catalytic activity and occurs through modulation of the secretory pathway. METTL9 interacts with key regulators of cellular transport, endocytosis and Golgi integrity; moreover, in Mettl9KO cells Golgi becomes fragmented. Overall, we demonstrate a developmental function of Mettl9 and link it to a 1MH-independent pathway, namely, the maintenance of the secretory system, which is essential throughout neural development.

METTL9 sustains vertebrate neural development primarily via non-catalytic functions

Spagnoletti L.;Crocco E.;Bianchini P.;Gustincich S.;Rizzo R.;Cremisi F.;Vignali R.;Pandolfini L.
2025

Abstract

METTL9 is an enzyme catalysing N1-methylation of histidine residues (1MH) within eukaryotic proteins. Given its high expression in vertebrate nervous system and its potential association with neurodevelopmental delay, we dissected Mettl9 role during neural development. We generated three distinct mouse embryonic stem cell lines: a complete Mettl9 knock-out (KO), an inducible METTL9 Degron and a line endogenously expressing a catalytically inactive protein, and assessed their ability to undergo neural differentiation. In parallel, we down-regulated mettl9 in Xenopus laevis embryos and characterised their neural development. Our multi-omics data indicate that METTL9 exerts a conserved role in sustaining vertebrate neurogenesis. This is largely independent of its catalytic activity and occurs through modulation of the secretory pathway. METTL9 interacts with key regulators of cellular transport, endocytosis and Golgi integrity; moreover, in Mettl9KO cells Golgi becomes fragmented. Overall, we demonstrate a developmental function of Mettl9 and link it to a 1MH-independent pathway, namely, the maintenance of the secretory system, which is essential throughout neural development.
2025
Settore BIOS-06/A - Fisiologia
Settore BIOS-04/A - Anatomia, biologia cellulare e biologia dello sviluppo comparate
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/156583
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact