Dirichlet's uniform approximation theorem is a fundamental result in Diophantine approximation that gives an optimal rate of approximation with a given bound. We study uniform Diophantine approximation properties on the Hecke group $\mathbf H_{4}$. For a given real number $\alpha $, we characterize the sequence of $\mathbf H_{4}$-best approximations of $\alpha $ and show that they are convergents of the Rosen continued fraction and the dual Rosen continued fraction of $\alpha $. We give analogous theorems of Dirichlet uniform approximation and the Legendre theorem with optimal constants.

Uniform Diophantine Approximation on the Hecke Group H4

Bakhtawar A.
;
2025

Abstract

Dirichlet's uniform approximation theorem is a fundamental result in Diophantine approximation that gives an optimal rate of approximation with a given bound. We study uniform Diophantine approximation properties on the Hecke group $\mathbf H_{4}$. For a given real number $\alpha $, we characterize the sequence of $\mathbf H_{4}$-best approximations of $\alpha $ and show that they are convergents of the Rosen continued fraction and the dual Rosen continued fraction of $\alpha $. We give analogous theorems of Dirichlet uniform approximation and the Legendre theorem with optimal constants.
2025
Settore MATH-04/A - Fisica matematica
File in questo prodotto:
File Dimensione Formato  
Bakhtawar_UniformDiophantineApproximation.pdf

Accesso chiuso

Tipologia: Published version
Licenza: Tutti i diritti riservati
Dimensione 826 kB
Formato Adobe PDF
826 kB Adobe PDF   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/156703
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex 0
social impact