Assuming the weak Bombieri-Lang conjecture, we prove that a generalization of Hilbert's irreducibility theorem holds for families of geometrically mordellic varieties (for instance, families of hyperbolic curves). As an application we prove that, assuming Bombieri-Lang, there are no polynomial bijections Q x Q -> Q, completing a strategy originally suggested by T. Tao.

A higher dimensional Hilbert irreducibility theorem

Bresciani, Giulio
2025

Abstract

Assuming the weak Bombieri-Lang conjecture, we prove that a generalization of Hilbert's irreducibility theorem holds for families of geometrically mordellic varieties (for instance, families of hyperbolic curves). As an application we prove that, assuming Bombieri-Lang, there are no polynomial bijections Q x Q -> Q, completing a strategy originally suggested by T. Tao.
2025
Settore MATH-02/B - Geometria
File in questo prodotto:
File Dimensione Formato  
Bresciani - A Higher Dimensional Hilbert Irreducibility Theorem.pdf

Accesso chiuso

Tipologia: Published version
Licenza: Tutti i diritti riservati
Dimensione 415.68 kB
Formato Adobe PDF
415.68 kB Adobe PDF   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/157065
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex 1
social impact