A search for the production of a single top quark in association with invisible particles is performed using proton-proton collision data collected with the CMS detector at the LHC at √s = 13 TeV, corresponding to an integrated luminosity of 138 fb−1. In this search, a flavor-changing neutral current produces a single top quark or antiquark and an invisible state nonresonantly. The invisible state consists of a hypothetical spin-1 particle acting as a new mediator and decaying to two spin-1/2 dark matter candidates. The analysis searches for events in which the top quark or antiquark decays hadronically. No significant excess of events compatible with that signature is observed. Exclusion limits at 95% confidence level are placed on the masses of the spin-1 mediator and the dark matter candidates, and are compared to constraints from the dark matter relic density measurements. In a vector (axial-vector) coupling scenario, masses of the spin-1 mediator are excluded up to 1.85 (1.85) TeV with an expectation of 2.0 (2.0) TeV, whereas masses of the dark matter candidates are excluded up to 0.75 (0.55) TeV with an expectation of 0.85 (0.65) TeV.

Search for dark matter production in association with a single top quark in proton-proton collisions at $$\sqrt{{\varvec{s}}}=13$$ TeV

Alexe, C.;Bruschini, D.;
2025

Abstract

A search for the production of a single top quark in association with invisible particles is performed using proton-proton collision data collected with the CMS detector at the LHC at √s = 13 TeV, corresponding to an integrated luminosity of 138 fb−1. In this search, a flavor-changing neutral current produces a single top quark or antiquark and an invisible state nonresonantly. The invisible state consists of a hypothetical spin-1 particle acting as a new mediator and decaying to two spin-1/2 dark matter candidates. The analysis searches for events in which the top quark or antiquark decays hadronically. No significant excess of events compatible with that signature is observed. Exclusion limits at 95% confidence level are placed on the masses of the spin-1 mediator and the dark matter candidates, and are compared to constraints from the dark matter relic density measurements. In a vector (axial-vector) coupling scenario, masses of the spin-1 mediator are excluded up to 1.85 (1.85) TeV with an expectation of 2.0 (2.0) TeV, whereas masses of the dark matter candidates are excluded up to 0.75 (0.55) TeV with an expectation of 0.85 (0.65) TeV.
Search for dark matter production in association with a single top quark in proton-proton collisions at √s = 13 TeV
2025
Settore PHYS-01/A - Fisica sperimentale delle interazioni fondamentali e applicazioni
Beyond Standard Model; Dark Matter; Hadron-Hadron Scattering; Top Physics
   Search for Higgs bosons decaying to charm quarks
   HIGCC
   European Commission
   Horizon 2020 Framework Programme
   724704

   Direct and indirect searches for new physics in events with top quarks using LHC proton-proton collisions at the CMS detector
   LHCTOPVLQ
   European Commission
   Horizon 2020 Framework Programme
   752730

   Majorana neutrino discovery strategy with CMS
   MajorNet
   European Commission
   Horizon 2020 Framework Programme
   758316

   International Training Network for Statistics in High Energy Physics and Society
   INSIGHTS
   European Commission
   Horizon 2020 Framework Programme
   765710

   The strong interaction at the frontier of knowledge: fundamental research and applications
   STRONG-2020
   European Commission
   Horizon 2020 Framework Programme
   824093

   Fundamental properties and time-scan of QCD matter at high densities and temperature exposed by jet substructure in heavy ion collisions with CMS experiment at the LHC
   QCDHighDensityCMS
   European Commission
   Horizon 2020 Framework Programme
   101002207

   INnovative TRiggEr techniques for beyond the standard model PhysIcs Discovery at the LHC
   INTREPID
   European Commission
   Horizon Europe Framework Programme
   101115353
File in questo prodotto:
File Dimensione Formato  
JHEP09(2025)141.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative Commons
Dimensione 1.61 MB
Formato Adobe PDF
1.61 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/157085
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex 0
social impact