InAs on Insulator (InAsOI) has been recently demonstrated as a promising platform to develop hybrid semiconducting-superconducting Josephson Junctions (JJs) and Josephson field effect transistors (JoFETs). The InAsOI consists of an InAs epilayer grown onto a cryogenic-electrically insulating InAlAs metamorphic buffer, which allows the electrical decoupling of surface-exposed adjacent devices together with a high critical current density integration. The miniaturization of Si microchips has progressed significantly due to the integration of high permittivity (high-k) gate insulators, allowing an increased gate coupling with the transistor channel with consequent reduced gate operating voltages and leakages. As well as for Si-based FETs, integrating high-k gate insulators with JoFETs promises similar advantages in superconducting electronics. Here, we investigate the gate-tunable electrical properties of InAsOI-based JoFETs featuring different high-k gate insulators, namely, HfO2 and Al2O3. We found that both the ungated and gate-tunable electrical properties of JoFETs are strongly dependent on the insulator chosen. With both dielectrics, the JoFETs can entirely suppress the switching current and increase the normal-state resistance by 10-20 times using negative gate voltages. The HfO2-JoFETs exhibit improved gate-tunable electrical performance compared to those achieved with Al2O3-JoFETs, which is related to the higher permittivity of the insulator. Gate-dependent electrical properties of InAsOI-based JoFETs were evaluated in the temperature range from 50 mK to 1 K. As expected, the switching current monotonically decreases with the increase in temperature, while the normal-state resistance remains unchanged until 1 K. Moreover, under the influence of an out-of-plane magnetic field, JoFETs exhibited an unconventional Fraunhofer diffraction pattern, from which an edge-peaked supercurrent density distribution was calculated. The origin of such anomalies is identified in the physics of the JJ edges, either with an increased current density or with a more accurate consideration of nonuniform flux focusing on the superconducting leads.
Josephson Field Effect Transistors with InAs on Insulator and High Permittivity Gate Dielectrics
Paghi, Alessandro
;Borgongino, Laura;Battisti, Sebastiano;Trupiano, Giacomo;De Simoni, Giorgio;Strambini, Elia;Sorba, Lucia;Giazotto, Francesco
2025
Abstract
InAs on Insulator (InAsOI) has been recently demonstrated as a promising platform to develop hybrid semiconducting-superconducting Josephson Junctions (JJs) and Josephson field effect transistors (JoFETs). The InAsOI consists of an InAs epilayer grown onto a cryogenic-electrically insulating InAlAs metamorphic buffer, which allows the electrical decoupling of surface-exposed adjacent devices together with a high critical current density integration. The miniaturization of Si microchips has progressed significantly due to the integration of high permittivity (high-k) gate insulators, allowing an increased gate coupling with the transistor channel with consequent reduced gate operating voltages and leakages. As well as for Si-based FETs, integrating high-k gate insulators with JoFETs promises similar advantages in superconducting electronics. Here, we investigate the gate-tunable electrical properties of InAsOI-based JoFETs featuring different high-k gate insulators, namely, HfO2 and Al2O3. We found that both the ungated and gate-tunable electrical properties of JoFETs are strongly dependent on the insulator chosen. With both dielectrics, the JoFETs can entirely suppress the switching current and increase the normal-state resistance by 10-20 times using negative gate voltages. The HfO2-JoFETs exhibit improved gate-tunable electrical performance compared to those achieved with Al2O3-JoFETs, which is related to the higher permittivity of the insulator. Gate-dependent electrical properties of InAsOI-based JoFETs were evaluated in the temperature range from 50 mK to 1 K. As expected, the switching current monotonically decreases with the increase in temperature, while the normal-state resistance remains unchanged until 1 K. Moreover, under the influence of an out-of-plane magnetic field, JoFETs exhibited an unconventional Fraunhofer diffraction pattern, from which an edge-peaked supercurrent density distribution was calculated. The origin of such anomalies is identified in the physics of the JJ edges, either with an increased current density or with a more accurate consideration of nonuniform flux focusing on the superconducting leads.| File | Dimensione | Formato | |
|---|---|---|---|
|
josephson-field-effect-transistors-with-inas-on-insulator-and-high-permittivity-gate-dielectrics.pdf
Accesso chiuso
Tipologia:
Published version
Licenza:
Tutti i diritti riservati
Dimensione
5.07 MB
Formato
Adobe PDF
|
5.07 MB | Adobe PDF | Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



