Quantum measurements are probabilistic and, in general, provide only partial information about the underlying quantum state. Obtaining a full classical description of an unknown quantum state requires the analysis of several different measurements, a task known as quantum-state tomography. Here we analyse the ultimate achievable performance in the tomography of continuous-variable systems, such as bosonic and quantum optical systems. We prove that tomography of these systems is extremely inefficient in terms of time resources, much more so than tomography of finite-dimensional systems such as qubits. Not only does the minimum number of state copies needed for tomography scale exponentially with the number of modes, but, even for low-energy states, it also scales unfavourably with the trace-distance error between the original state and its estimated classical description. On a more positive note, we prove that the tomography of Gaussian states is efficient by establishing a bound on the trace-distance error made when approximating a Gaussian state from knowledge of the first and second moments within a specified error bound. Last, we demonstrate that the tomography of non-Gaussian states prepared through Gaussian unitaries and a few local non-Gaussian evolutions is efficient and experimentally feasible.

Learning quantum states of continuous-variable systems

Mele F. A.;Eisert J.;Giovannetti V.;Lami L.;Leone L.;Oliviero S. F. E.
2025

Abstract

Quantum measurements are probabilistic and, in general, provide only partial information about the underlying quantum state. Obtaining a full classical description of an unknown quantum state requires the analysis of several different measurements, a task known as quantum-state tomography. Here we analyse the ultimate achievable performance in the tomography of continuous-variable systems, such as bosonic and quantum optical systems. We prove that tomography of these systems is extremely inefficient in terms of time resources, much more so than tomography of finite-dimensional systems such as qubits. Not only does the minimum number of state copies needed for tomography scale exponentially with the number of modes, but, even for low-energy states, it also scales unfavourably with the trace-distance error between the original state and its estimated classical description. On a more positive note, we prove that the tomography of Gaussian states is efficient by establishing a bound on the trace-distance error made when approximating a Gaussian state from knowledge of the first and second moments within a specified error bound. Last, we demonstrate that the tomography of non-Gaussian states prepared through Gaussian unitaries and a few local non-Gaussian evolutions is efficient and experimentally feasible.
2025
Settore PHYS-04/A - Fisica teorica della materia, modelli, metodi matematici e applicazioni
Imaging and sensing; Quantum information; Theoretical physics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/160087
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex 2
social impact