We present a new relation between the short time behavior of the heat flow, the geometry of optimal transport and the Ricci flow. We also show how this relation can be used to define an evolution of metrics on non–smooth metric measure spaces with Ricci curvature bounded from below

A Flow Tangent to the Ricci Flow via Heat Kernels and Mass Transport

MANTEGAZZA, Carlo Maria
2014

Abstract

We present a new relation between the short time behavior of the heat flow, the geometry of optimal transport and the Ricci flow. We also show how this relation can be used to define an evolution of metrics on non–smooth metric measure spaces with Ricci curvature bounded from below
2014
Settore MAT/05 - Analisi Matematica
Settore MATH-03/A - Analisi matematica
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/1839
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
  • OpenAlex ND
social impact