We formulate an Hamilton-Jacobi partial differential equation H(x, Du(x)) = 0 on a n dimensional manifold M, with assumptions of convexity of the sets {p : H(x, p) <= 0} subset of T*(x)M, for all x. We reduce the above problem to a simpler problem; this shows that u may be built using an asymmetric distance (this is a generalization of the "distance function" in Finsler geometry); this brings forth a 'completeness' condition, and a Hopf-Rinow theorem adapted to Hamilton-Jacobi problems. The 'completeness' condition implies that u is the unique viscosity solution to the above problem.

Regularity and Variationality of Solutions to Hamilton-Jacobi Equations. Part II: Variationality, Existence, Uniqueness

MENNUCCI, Andrea Carlo Giuseppe
2011

Abstract

We formulate an Hamilton-Jacobi partial differential equation H(x, Du(x)) = 0 on a n dimensional manifold M, with assumptions of convexity of the sets {p : H(x, p) <= 0} subset of T*(x)M, for all x. We reduce the above problem to a simpler problem; this shows that u may be built using an asymmetric distance (this is a generalization of the "distance function" in Finsler geometry); this brings forth a 'completeness' condition, and a Hopf-Rinow theorem adapted to Hamilton-Jacobi problems. The 'completeness' condition implies that u is the unique viscosity solution to the above problem.
File in questo prodotto:
File Dimensione Formato  
FINALE_PUBBLICATO_bis.pdf

Accesso chiuso

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 648.22 kB
Formato Adobe PDF
648.22 kB Adobe PDF   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/2060
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact