The excited electronic states of nearby molecules are in general coupled via Coulomb interaction even in the absence of wavefunction overlap. When two different organic molecules having a nearly resonant excited state are close enough, the dipole-dipole interaction can significantly affect their optical response. Even though they do not chemically interact, concerning their coupling to light, such molecules do not act independently, but rather as a 'virtual heterodimer' the response of which stems from, but is different from that of each molecule alone. We discuss here a simple and general model to estimate their resonant nonlinear susceptibilities.

Optical nonlinearities of hybrid pairs of organic molecules

LA ROCCA, Giuseppe Carlo
2013-01-01

Abstract

The excited electronic states of nearby molecules are in general coupled via Coulomb interaction even in the absence of wavefunction overlap. When two different organic molecules having a nearly resonant excited state are close enough, the dipole-dipole interaction can significantly affect their optical response. Even though they do not chemically interact, concerning their coupling to light, such molecules do not act independently, but rather as a 'virtual heterodimer' the response of which stems from, but is different from that of each molecule alone. We discuss here a simple and general model to estimate their resonant nonlinear susceptibilities.
INORGANIC QUANTUM-WELLS; ENERGY-TRANSFER; EXCITONS; NANOSTRUCTURES
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/28990
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact