The dispersive properties of the wave equation u_{tt} + Au = 0 are considered, where A is either the Hermite operator −\Delta+ |x|^2 or the twisted Laplacian −(∇_x − iy)^2/2 − (∇_y + ix)^2/2. In both cases we prove optimal L^1 − L^∞ dispersive estimates. More generally, we give some partial results concerning the flows exp(itL^\nu) associated to fractional powers of the twisted Laplacian for 0 < \nu < 1.

On the wave equation associated to the Hermite and the twisted Laplacian

RICCI, Fulvio
2010

Abstract

The dispersive properties of the wave equation u_{tt} + Au = 0 are considered, where A is either the Hermite operator −\Delta+ |x|^2 or the twisted Laplacian −(∇_x − iy)^2/2 − (∇_y + ix)^2/2. In both cases we prove optimal L^1 − L^∞ dispersive estimates. More generally, we give some partial results concerning the flows exp(itL^\nu) associated to fractional powers of the twisted Laplacian for 0 < \nu < 1.
File in questo prodotto:
File Dimensione Formato  
D'AnconaOn the wave equation associated to the Hermite and the twisted LaplacianJ Fourier Anal Appl2010294-31016.pdf

Accesso chiuso

Tipologia: Accepted version (post-print)
Licenza: Non pubblico
Dimensione 345.39 kB
Formato Adobe PDF
345.39 kB Adobe PDF   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/3434
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
  • OpenAlex ND
social impact