The paper solves special cases of Vojta's conjecture over function fields, using a completely new method. A byproduct is a nontrivial estimation of the number of zeros of P(u,v) for a polynomial P and u,v variable S-units in a function field.

Some cases of Vojta's conjecture on integral points over function fields. J. Algebraic Geom

ZANNIER, UMBERTO;
2008

Abstract

The paper solves special cases of Vojta's conjecture over function fields, using a completely new method. A byproduct is a nontrivial estimation of the number of zeros of P(u,v) for a polynomial P and u,v variable S-units in a function field.
2008
Algebraic geometry; Integral points; Function fields
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/360
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact