The paper solves special cases of Vojta's conjecture over function fields, using a completely new method. A byproduct is a nontrivial estimation of the number of zeros of P(u,v) for a polynomial P and u,v variable S-units in a function field.
Some cases of Vojta's conjecture on integral points over function fields. J. Algebraic Geom
ZANNIER, UMBERTO;
2008
Abstract
The paper solves special cases of Vojta's conjecture over function fields, using a completely new method. A byproduct is a nontrivial estimation of the number of zeros of P(u,v) for a polynomial P and u,v variable S-units in a function field.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.