In this paper we introduce some new classes of functions, among these a class of weak diffeomorphisms. In these classes we prove by direct methods the existence of minimizers for several kinds of variational integrals. In particular, we prove the existence of one-to-one orientation-preserving maps that minimize suitable energies associated with hyperelastic materials. The minimizers are also proved to satisfy equilibrium equations. Finally radial deformations are discussed in connection with cavitation.

Cartesian currents, weak diffeomorphisms and existence theorems in nonlinear elasticity

GIAQUINTA, Mariano;
1989

Abstract

In this paper we introduce some new classes of functions, among these a class of weak diffeomorphisms. In these classes we prove by direct methods the existence of minimizers for several kinds of variational integrals. In particular, we prove the existence of one-to-one orientation-preserving maps that minimize suitable energies associated with hyperelastic materials. The minimizers are also proved to satisfy equilibrium equations. Finally radial deformations are discussed in connection with cavitation.
File in questo prodotto:
File Dimensione Formato  
Cartesian_Currents_Weak_Diffeomorphisms.pdf

Accesso chiuso

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 2.52 MB
Formato Adobe PDF
2.52 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
erratum_addendum.pdf

Accesso chiuso

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 324.49 kB
Formato Adobe PDF
324.49 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11384/3745
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 74
  • ???jsp.display-item.citation.isi??? 69
social impact