In this paper we construct constant scalar curvature metrics on the generalized connected sum of two compact Riemannian manifolds (M_1,g_1) and (M_2,g_2) along a common Riemannian submanifold (K,g_K), in the case where the codimension of K is at least 3 and the manifolds M_1 and M_2 have the same nonzero constant scalar curvature S. This yields a generalization of the Joyce’s results for point-wise connected sums.

Generalized connected sum construction for nonzero constant scalar curvature metrics

MAZZIERI, LORENZO
2008

Abstract

In this paper we construct constant scalar curvature metrics on the generalized connected sum of two compact Riemannian manifolds (M_1,g_1) and (M_2,g_2) along a common Riemannian submanifold (K,g_K), in the case where the codimension of K is at least 3 and the manifolds M_1 and M_2 have the same nonzero constant scalar curvature S. This yields a generalization of the Joyce’s results for point-wise connected sums.
File in questo prodotto:
File Dimensione Formato  
Generalized connected sum construction for nonzero CSC metrics.pdf

Accesso chiuso

Tipologia: Submitted version (pre-print)
Licenza: Non pubblico
Dimensione 195.15 kB
Formato Adobe PDF
195.15 kB Adobe PDF   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/3794
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
  • OpenAlex ND
social impact