In this paper we provide the first extension of the DiPerna–Lions theory of flows associated to Sobolev vector fields to infinite-dimensional spaces, in particular to Cameron–Martin-valued vector fields defined in Wiener spaces E and having a Sobolev regularity. The proof is based on the analysis of the continuity equation in E, and on uniform (Gaussian) commutator estimates in finite-dimensional spaces.

On flows associated to Sobolev vector fields in Wiener spaces: an approach a la DiPerna-Lions

AMBROSIO, Luigi;
2009

Abstract

In this paper we provide the first extension of the DiPerna–Lions theory of flows associated to Sobolev vector fields to infinite-dimensional spaces, in particular to Cameron–Martin-valued vector fields defined in Wiener spaces E and having a Sobolev regularity. The proof is based on the analysis of the continuity equation in E, and on uniform (Gaussian) commutator estimates in finite-dimensional spaces.
File in questo prodotto:
File Dimensione Formato  
Ambrosio_Figalli.pdf

Accesso chiuso

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 320.1 kB
Formato Adobe PDF
320.1 kB Adobe PDF   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/4052
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 52
  • ???jsp.display-item.citation.isi??? 50
  • OpenAlex ND
social impact