We discuss essential dimension of group schemes, with particular attention to infinitesimal group schemes. We prove that the essential dimension of a group scheme of finite type over a field $k$ is greater than or equal to the difference between the dimension of its Lie algebra and its dimension. Furthermore, we show that the essential dimension of a trigonalizable group scheme of length p^n over a field of characteristic p > 0 is at most n. We give several examples.

On the essential dimension of infinitesimal group schemes

VISTOLI, ANGELO
2013

Abstract

We discuss essential dimension of group schemes, with particular attention to infinitesimal group schemes. We prove that the essential dimension of a group scheme of finite type over a field $k$ is greater than or equal to the difference between the dimension of its Lie algebra and its dimension. Furthermore, we show that the essential dimension of a trigonalizable group scheme of length p^n over a field of characteristic p > 0 is at most n. We give several examples.
2013
Settore MAT/03 - Geometria
File in questo prodotto:
File Dimensione Formato  
135.1.tossici.pdf

Accesso chiuso

Tipologia: Published version
Licenza: Non pubblico
Dimensione 357.66 kB
Formato Adobe PDF
357.66 kB Adobe PDF   Richiedi una copia
377.pdf

accesso aperto

Tipologia: Accepted version (post-print)
Licenza: Solo Lettura
Dimensione 143.78 kB
Formato Adobe PDF
143.78 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/4466
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
  • OpenAlex ND
social impact