The arithmetics of the frequency and of the rotation number play a fundamental role in the study of reducibility of analytic quasiperiodic cocycles which are sufficiently close to a constant. In this paper we show how to generalize previous works by L.H. Eliasson which deal with the diophantine case so as to implement a Brjuno-Rüssmann arithmetical condition both on the frequency and on the rotation number. Our approach adapts the Pöschel-Rüssmann KAM method, which was previously used in the problem of linearization of vector fields, to the problem of reducing cocycles.
Titolo: | Reducibility of quasiperiodic cocycles under a Brjuno-Rüssmann arithmetical condition | |
Autori: | ||
Data di pubblicazione: | 2012 | |
Rivista: | ||
Digital Object Identifier (DOI): | http://dx.doi.org/10.3934/jmd.2012.6.59 | |
Parole Chiave: | Quasiperiodic cocycle; reducibility; KAM method; Brjuno condition; diophantine condition | |
Handle: | http://hdl.handle.net/11384/4519 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.