The arithmetics of the frequency and of the rotation number play a fundamental role in the study of reducibility of analytic quasiperiodic cocycles which are sufficiently close to a constant. In this paper we show how to generalize previous works by L.H. Eliasson which deal with the diophantine case so as to implement a Brjuno-Rüssmann arithmetical condition both on the frequency and on the rotation number. Our approach adapts the Pöschel-Rüssmann KAM method, which was previously used in the problem of linearization of vector fields, to the problem of reducing cocycles.
Reducibility of quasiperiodic cocycles under a Brjuno-Rüssmann arithmetical condition
MARMI, Stefano
2012
Abstract
The arithmetics of the frequency and of the rotation number play a fundamental role in the study of reducibility of analytic quasiperiodic cocycles which are sufficiently close to a constant. In this paper we show how to generalize previous works by L.H. Eliasson which deal with the diophantine case so as to implement a Brjuno-Rüssmann arithmetical condition both on the frequency and on the rotation number. Our approach adapts the Pöschel-Rüssmann KAM method, which was previously used in the problem of linearization of vector fields, to the problem of reducing cocycles.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.