Let $V$ be a separable Hilbert space, possibly infinite dimensional. Let $\St(p,V)$ be the Stiefel manifold of orthonormal frames of $p$ vectors in $V$, and let $\Gr(p,V)$ be the Grassmann manifold of $p$ dimensional subspaces of $V$. We study the distance and the geodesics in these manifolds, by reducing the matter to the finite dimensional case. We then prove that any two points in those manifolds can be connected by a minimal geodesic, and characterize the cut locus.
Geodesics in infinite dimensional Stiefel and Grassmann manifolds
MENNUCCI, Andrea Carlo Giuseppe
2012
Abstract
Let $V$ be a separable Hilbert space, possibly infinite dimensional. Let $\St(p,V)$ be the Stiefel manifold of orthonormal frames of $p$ vectors in $V$, and let $\Gr(p,V)$ be the Grassmann manifold of $p$ dimensional subspaces of $V$. We study the distance and the geodesics in these manifolds, by reducing the matter to the finite dimensional case. We then prove that any two points in those manifolds can be connected by a minimal geodesic, and characterize the cut locus.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
pubblicazione ufficiale CRASS14947.pdf
Accesso chiuso
Tipologia:
Altro materiale allegato
Licenza:
Non pubblico
Dimensione
325.5 kB
Formato
Adobe PDF
|
325.5 kB | Adobe PDF | Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.