Ultra-high resolution hydrodynamic simulations using 10243 grid points are performed of a very large supernova burst in a forming galaxy, with properties similar to those inferred for Lyman Break Galaxies (LBGs). Explosions produce kpc-sized expanding hot bubbles enclosed by cool, dense shells, and the engulfed gas is polluted with freshly-synthesised heavy elements. We show that the resultant inhomogeneous mixing produces a large spread ([Fe/H] ~ -1 to -5) of metallicities, which affects the subsequent galactic chemical evolution and leaves its imprint on metal-poor stars. By combining a spectral synthesis model with the numerical results, we predict Lyα emission from such galaxy at z=3. We find that the simulated galaxy, whose peak star formation rate is ~200M[[mdot]]yr-1, produces a Lyα luminosity Lα= 9.7×1042ergs-1. This value favorably matches the observed one, but some discrepancies are left for the Lyα line width, the metallicity, and X-ray properties. Since the results of the simulation is applicable only at the very early epoch of the galaxy formation, the metallicity is still lower than that of LBGs. However, the analysis presented here demonstrates a way to enable a systematic comparison with observational data. It is concluded that LBGs are optimal objects to scrutinise the early self-enrichment in forming galaxies. In the future, the predicted bubbly structure carved by SNe may be directly detected by high resolution observations with JWST.

Multiple Supernova Explosions in a Forming Galaxy

FERRARA, ANDREA
2004

Abstract

Ultra-high resolution hydrodynamic simulations using 10243 grid points are performed of a very large supernova burst in a forming galaxy, with properties similar to those inferred for Lyman Break Galaxies (LBGs). Explosions produce kpc-sized expanding hot bubbles enclosed by cool, dense shells, and the engulfed gas is polluted with freshly-synthesised heavy elements. We show that the resultant inhomogeneous mixing produces a large spread ([Fe/H] ~ -1 to -5) of metallicities, which affects the subsequent galactic chemical evolution and leaves its imprint on metal-poor stars. By combining a spectral synthesis model with the numerical results, we predict Lyα emission from such galaxy at z=3. We find that the simulated galaxy, whose peak star formation rate is ~200M[[mdot]]yr-1, produces a Lyα luminosity Lα= 9.7×1042ergs-1. This value favorably matches the observed one, but some discrepancies are left for the Lyα line width, the metallicity, and X-ray properties. Since the results of the simulation is applicable only at the very early epoch of the galaxy formation, the metallicity is still lower than that of LBGs. However, the analysis presented here demonstrates a way to enable a systematic comparison with observational data. It is concluded that LBGs are optimal objects to scrutinise the early self-enrichment in forming galaxies. In the future, the predicted bubbly structure carved by SNe may be directly detected by high resolution observations with JWST.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/531
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact