We use numerical simulations of cosmic reionization and radiative processes related to the HI 21-cm emission line to produce synthetic radio maps as seen by next-generation telescopes that will operate at low radio frequencies (e.g. the Low Frequency Array, LOFAR). Two different scenarios, in which the end of reionization occurs early (z~ 13) or late (z~ 8) depending on the initial mass function (IMF) of the first stars and ionizing photon escape fraction, have been explored. For each of these models we produce synthetic HI 21-cm emission maps by convolving the simulation outputs with the provisional LOFAR sampling function in the frequency range 76-140 MHz. If reionization occurs late, LOFAR will be able to detect individual HI structures on arcmin scales, emitting at a brightness temperature of ~35 mK as a 3σ signal in about 1000 h of observing time. In the case of early reionization, the detection would be unlikely, due to decreased sensitivity and increased sky temperatures. These results assume that ionospheric, interference and foreground issues are fully under control.

Radio views of cosmic reionization

FERRARA, A;
2006

Abstract

We use numerical simulations of cosmic reionization and radiative processes related to the HI 21-cm emission line to produce synthetic radio maps as seen by next-generation telescopes that will operate at low radio frequencies (e.g. the Low Frequency Array, LOFAR). Two different scenarios, in which the end of reionization occurs early (z~ 13) or late (z~ 8) depending on the initial mass function (IMF) of the first stars and ionizing photon escape fraction, have been explored. For each of these models we produce synthetic HI 21-cm emission maps by convolving the simulation outputs with the provisional LOFAR sampling function in the frequency range 76-140 MHz. If reionization occurs late, LOFAR will be able to detect individual HI structures on arcmin scales, emitting at a brightness temperature of ~35 mK as a 3σ signal in about 1000 h of observing time. In the case of early reionization, the detection would be unlikely, due to decreased sensitivity and increased sky temperatures. These results assume that ionospheric, interference and foreground issues are fully under control.
2006
Settore FIS/05 - Astronomia e Astrofisica
Settore PHYS-05/A - Astrofisica, cosmologia e scienza dello spazio
intergalactic medium; cosmology: theory; diffuse radiation
File in questo prodotto:
File Dimensione Formato  
mnrasl_369_1_l66.pdf

accesso aperto

Tipologia: Published version
Licenza: Licenza OA dell'editore
Dimensione 2.89 MB
Formato Adobe PDF
2.89 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/537
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 10
  • OpenAlex ND
social impact