We conjecture that thermalization following a quantum quench in a strongly correlated quantum system is closely connected to many-body delocalization in the space of quasi-particles. This scenario is tested in the anisotropic Heisenberg spin chain with different types of integrability-breaking terms. We first quantify the deviations from integrability by analyzing the level spacing statistics and the inverse participation ratio of the system’s eigenstates. We then focus on thermalization, by studying the dynamics after a sudden quench of the anisotropy parameter. Our numerical simulations clearly support the conjecture, as long as the integrability-breaking term acts homogeneously on the quasiparticle space, in such a way as to induce ergodicity over all the relevant Hilbert space.

Quantum quenches, thermalization, and many-body localization

ROSSINI, DAVIDE;FAZIO, ROSARIO;
2011

Abstract

We conjecture that thermalization following a quantum quench in a strongly correlated quantum system is closely connected to many-body delocalization in the space of quasi-particles. This scenario is tested in the anisotropic Heisenberg spin chain with different types of integrability-breaking terms. We first quantify the deviations from integrability by analyzing the level spacing statistics and the inverse participation ratio of the system’s eigenstates. We then focus on thermalization, by studying the dynamics after a sudden quench of the anisotropy parameter. Our numerical simulations clearly support the conjecture, as long as the integrability-breaking term acts homogeneously on the quasiparticle space, in such a way as to induce ergodicity over all the relevant Hilbert space.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/5396
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 133
  • ???jsp.display-item.citation.isi??? 134
  • OpenAlex ND
social impact