We prove that the curvature flow of an embedded planar network of three curves connected through a triple junction, with fixed endpoints on the boundary of a given strictly convex domain, exists smooth as long as the lengths of the three curves stay far from zero. If this is the case for all times, then the evolution exists for all times and the network converges to the Steiner minimal connection between the three endpoints.

Motion by Curvature of Planar Networks II

MANTEGAZZA, Carlo Maria;
2016

Abstract

We prove that the curvature flow of an embedded planar network of three curves connected through a triple junction, with fixed endpoints on the boundary of a given strictly convex domain, exists smooth as long as the lengths of the three curves stay far from zero. If this is the case for all times, then the evolution exists for all times and the network converges to the Steiner minimal connection between the three endpoints.
File in questo prodotto:
File Dimensione Formato  
tripunto2.pdf

Accesso chiuso

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 407.3 kB
Formato Adobe PDF
407.3 kB Adobe PDF   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/5493
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 23
  • OpenAlex ND
social impact