Fluorescent organic nanoparticles (FONs) based on aggregation-induced emission (AIE) are receiving increasing attention owing to their simple preparation, enhanced optical properties, and a wide range of applications. Therefore, finding simple methods to tune the structural and emissive properties of FONs is highly desirable. In this context, we discuss the preparation of highly emissive, amorphous AIE spherical nanoparticles based on a structurally-simple molecular rotor and their sonochemical transformation into rhomboidal nanocrystals. Interestingly, the ultrasound-induced modification of the morphology is accompanied by a remarkable enhancement in the stability and emission of the resulting nanocrystals. Detailed characterization of both spherical and rhomboidal nanoparticles was carried out by means of several microscopic, crystallographic, and spectroscopic techniques as well as quantum mechanical calculations. In a nutshell, this work provides a unique example of the ultrasound-induced switching of morphology, stability, and emission in FONs.

Ultrasound-induced transformation of fluorescent organic nanoparticles from a molecular rotor into rhomboidal nanocrystals with enhanced emission

BARONE, Vincenzo;BRANCATO, Giuseppe;
2014

Abstract

Fluorescent organic nanoparticles (FONs) based on aggregation-induced emission (AIE) are receiving increasing attention owing to their simple preparation, enhanced optical properties, and a wide range of applications. Therefore, finding simple methods to tune the structural and emissive properties of FONs is highly desirable. In this context, we discuss the preparation of highly emissive, amorphous AIE spherical nanoparticles based on a structurally-simple molecular rotor and their sonochemical transformation into rhomboidal nanocrystals. Interestingly, the ultrasound-induced modification of the morphology is accompanied by a remarkable enhancement in the stability and emission of the resulting nanocrystals. Detailed characterization of both spherical and rhomboidal nanoparticles was carried out by means of several microscopic, crystallographic, and spectroscopic techniques as well as quantum mechanical calculations. In a nutshell, this work provides a unique example of the ultrasound-induced switching of morphology, stability, and emission in FONs.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11384/55907
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 24
social impact