We describe the behaviour of minimum problems involving non-convex surface integrals in 2D, singularly perturbed by a curvature term. We show that their limit is described by functionals which take into account energies concentrated on vertices of polygons. Non-locality and non-compactness effects are highlighted.

Curvature theory of boundary phases: the two dimensional case

Malchiodi, Andrea
2002

Abstract

We describe the behaviour of minimum problems involving non-convex surface integrals in 2D, singularly perturbed by a curvature term. We show that their limit is described by functionals which take into account energies concentrated on vertices of polygons. Non-locality and non-compactness effects are highlighted.
2002
Settore MAT/05 - Analisi Matematica
Surface energies; curvature functionals; phase transitions; Γ-convergence; non convex problems
   Variational methods and nonlinear differential equations.
   M.U.R.S.T.

   Fulbright Fellowship
   Fulbright Foundation
File in questo prodotto:
File Dimensione Formato  
ifb.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative Commons
Dimensione 748.04 kB
Formato Adobe PDF
748.04 kB Adobe PDF
2000bm.pdf

Accesso chiuso

Tipologia: Accepted version (post-print)
Licenza: Non pubblico
Dimensione 370.53 kB
Formato Adobe PDF
370.53 kB Adobe PDF   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/56039
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
  • OpenAlex ND
social impact