We deal with the existence of positive radial solutions concentrating on spheres to a class of singularly perturbed elliptic problems like −ε2u + V (|x|)u = up, u ∈ H1(Rn). Under suitable assumptions on the auxiliary potential M(r) = rn−1V θ (r), θ (p +1)/(p −1)−1/2, we provide necessary and sufficient conditions for concentration as well as the bifurcation of non-radial solutions.

Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres, part I

Ambrosetti, Antonio
;
Malchiodi, Andrea;
2003

Abstract

We deal with the existence of positive radial solutions concentrating on spheres to a class of singularly perturbed elliptic problems like −ε2u + V (|x|)u = up, u ∈ H1(Rn). Under suitable assumptions on the auxiliary potential M(r) = rn−1V θ (r), θ (p +1)/(p −1)−1/2, we provide necessary and sufficient conditions for concentration as well as the bifurcation of non-radial solutions.
2003
Settore MAT/05 - Analisi Matematica
   Variational Methods and Nonlinear Differential Equations.
   M.U.R.S.T.
File in questo prodotto:
File Dimensione Formato  
AMN-CMP.pdf

Accesso chiuso

Tipologia: Published version
Licenza: Non pubblico
Dimensione 381.5 kB
Formato Adobe PDF
381.5 kB Adobe PDF   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/56046
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 166
  • ???jsp.display-item.citation.isi??? 172
  • OpenAlex ND
social impact