We prove concentration phenomena for the equation − \epsillon^2 \Delta u+u = u^p in a smooth bounded domain if R^n and with Neumann boundary conditions. The exponent p is greater than or equal to 1, and the parameter \epsilon is converging to zero. For a suitable sequence \epsilon_j \to 0, we prove the existence of positive solutions u_j concentrating at the whole boundary or at some of its components.
Multidimensional boundary layers for a singularly perturbed Neumann problem
Malchiodi, Andrea
;
2004
Abstract
We prove concentration phenomena for the equation − \epsillon^2 \Delta u+u = u^p in a smooth bounded domain if R^n and with Neumann boundary conditions. The exponent p is greater than or equal to 1, and the parameter \epsilon is converging to zero. For a suitable sequence \epsilon_j \to 0, we prove the existence of positive solutions u_j concentrating at the whole boundary or at some of its components.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Duke.pdf
Accesso chiuso
Tipologia:
Published version
Licenza:
Non pubblico
Dimensione
358.11 kB
Formato
Adobe PDF
|
358.11 kB | Adobe PDF | Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.