We prove concentration phenomena for the equation − \epsillon^2 \Delta u+u = u^p in a smooth bounded domain if R^n and with Neumann boundary conditions. The exponent p is greater than or equal to 1, and the parameter \epsilon is converging to zero. For a suitable sequence \epsilon_j \to 0, we prove the existence of positive solutions u_j concentrating at the whole boundary or at some of its components.

Multidimensional boundary layers for a singularly perturbed Neumann problem

Malchiodi, Andrea
;
2004

Abstract

We prove concentration phenomena for the equation − \epsillon^2 \Delta u+u = u^p in a smooth bounded domain if R^n and with Neumann boundary conditions. The exponent p is greater than or equal to 1, and the parameter \epsilon is converging to zero. For a suitable sequence \epsilon_j \to 0, we prove the existence of positive solutions u_j concentrating at the whole boundary or at some of its components.
2004
Settore MAT/05 - Analisi Matematica
File in questo prodotto:
File Dimensione Formato  
Duke.pdf

Accesso chiuso

Tipologia: Published version
Licenza: Non pubblico
Dimensione 358.11 kB
Formato Adobe PDF
358.11 kB Adobe PDF   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/56101
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 97
  • ???jsp.display-item.citation.isi??? 103
  • OpenAlex ND
social impact