In this paper we prove a sharp version of the Moser-Trudinger inequality for the Euler-Lagrange functional of a singular Toda system, motivated by the study of models in Chern-Simons theory. Our result extends those in [14] and [37] for the scalar case, as well as that in [23] for the regular Toda system. We expect this inequality to be a basic tool to attack variationally the existence problem under general assumptions
Titolo: | A Moser-Trudinger inequality for the singular Toda system | |
Autori: | ||
Data di pubblicazione: | 2014 | |
Rivista: | ||
Parole Chiave: | Toda system, best constants, Moser-Trudinger inequalities, singular Liouville equation | |
Handle: | http://hdl.handle.net/1234/56105 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.