In this paper we prove a sharp version of the Moser-Trudinger inequality for the Euler-Lagrange functional of a singular Toda system, motivated by the study of models in Chern-Simons theory. Our result extends those in [14] and [37] for the scalar case, as well as that in [23] for the regular Toda system. We expect this inequality to be a basic tool to attack variationally the existence problem under general assumptions

A Moser-Trudinger inequality for the singular Toda system

MALCHIODI, ANDREA
2014

Abstract

In this paper we prove a sharp version of the Moser-Trudinger inequality for the Euler-Lagrange functional of a singular Toda system, motivated by the study of models in Chern-Simons theory. Our result extends those in [14] and [37] for the scalar case, as well as that in [23] for the regular Toda system. We expect this inequality to be a basic tool to attack variationally the existence problem under general assumptions
2014
Toda system, best constants, Moser-Trudinger inequalities, singular Liouville equation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/56105
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact