We prove new concentration phenomena for the equation −ɛ2 Δu + u = u p in a smooth bounded domain Ω⊆R3 and with Neumann boundary conditions. Here p > 1 and ɛ > 0 is small. We show that concentration of solutions occurs at some geodesics of ∂Ω when ɛ → 0.
Concentration at curves for a singularly perturbed Neumann problem in three-dimensional domains
Malchiodi, Andrea
2005
Abstract
We prove new concentration phenomena for the equation −ɛ2 Δu + u = u p in a smooth bounded domain Ω⊆R3 and with Neumann boundary conditions. Here p > 1 and ɛ > 0 is small. We show that concentration of solutions occurs at some geodesics of ∂Ω when ɛ → 0.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
GAFA.pdf
Accesso chiuso
Tipologia:
Published version
Licenza:
Non pubblico
Dimensione
1.73 MB
Formato
Adobe PDF
|
1.73 MB | Adobe PDF | Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.