In this paper we carry on the study of asymptotic behavior of some solutions to a singularly perturbed problem with mixed Dirichlet and Neumann boundary conditions, started in the ¯rst paper [10]. Here we are mainly interested in the analysis of the location and shape of least energy solutions when the singular perturbation parameter tends to zero. We show that in many cases they coincide with the new solutions produced in [10].

Concentration of solutions for some singularly perturbed mixed problems. Part II: asymptotics of minimal energy solutions

MALCHIODI, ANDREA;
2010

Abstract

In this paper we carry on the study of asymptotic behavior of some solutions to a singularly perturbed problem with mixed Dirichlet and Neumann boundary conditions, started in the ¯rst paper [10]. Here we are mainly interested in the analysis of the location and shape of least energy solutions when the singular perturbation parameter tends to zero. We show that in many cases they coincide with the new solutions produced in [10].
2010
Finite-dimensional reductions; Local inversion; Singularly perturbed elliptic problems;
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/56167
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 13
  • OpenAlex ND
social impact