We consider surfaces immersed in three-dimensional pseudohermitian manifolds. We define the notion of (p-)mean curvature and of the associated (p-)minimal surfaces, extending some concepts previously given for the (flat) Heisenberg group. We interpret the p-mean curvature not only as the tangential sublaplacian of a defining function, but also as the curvature of a characteristic curve, and as a quantity in terms of calibration geometry. As a differential equation, the p-minimal surface equation is degenerate (hyperbolic and elliptic). To analyze the singular set (where the (p-)area integrand vanishes), we formulate some {\em extension} theorems, which describe how the characteristic curves meet the singular set. This allows us to classify the entire solutions to this equation and to solve a Bernstein-type problem (for graphs over the $xy$-plane) in the Heisenberg group $H_1$. In $H_{1}$, identified with the Euclidean space $R^{3}$, the p-minimal surfaces are classical ruled surfaces with the rulings generated by Legendrian lines. We also prove a uniqueness theorem for the Dirichlet problem under a condition on the size of the singular set in two dimensions, and generalize to higher dimensions without any size control condition. We also show that there are no closed, connected, $C^{2}$ smoothly immersed constant p-mean curvature or p-minimal surfaces of genus greater than one in the standard $S^{3}.$ This fact continues to hold when $S^{3}$ is replaced by a general pseudohermitian 3-manifold.
Minimal surfaces in pseudohermitian geometry
Malchiodi, Andrea
;Yang, Paul
2005
Abstract
We consider surfaces immersed in three-dimensional pseudohermitian manifolds. We define the notion of (p-)mean curvature and of the associated (p-)minimal surfaces, extending some concepts previously given for the (flat) Heisenberg group. We interpret the p-mean curvature not only as the tangential sublaplacian of a defining function, but also as the curvature of a characteristic curve, and as a quantity in terms of calibration geometry. As a differential equation, the p-minimal surface equation is degenerate (hyperbolic and elliptic). To analyze the singular set (where the (p-)area integrand vanishes), we formulate some {\em extension} theorems, which describe how the characteristic curves meet the singular set. This allows us to classify the entire solutions to this equation and to solve a Bernstein-type problem (for graphs over the $xy$-plane) in the Heisenberg group $H_1$. In $H_{1}$, identified with the Euclidean space $R^{3}$, the p-minimal surfaces are classical ruled surfaces with the rulings generated by Legendrian lines. We also prove a uniqueness theorem for the Dirichlet problem under a condition on the size of the singular set in two dimensions, and generalize to higher dimensions without any size control condition. We also show that there are no closed, connected, $C^{2}$ smoothly immersed constant p-mean curvature or p-minimal surfaces of genus greater than one in the standard $S^{3}.$ This fact continues to hold when $S^{3}$ is replaced by a general pseudohermitian 3-manifold.File | Dimensione | Formato | |
---|---|---|---|
PISAHEIS.pdf
accesso aperto
Tipologia:
Published version
Licenza:
Solo Lettura
Dimensione
378.08 kB
Formato
Adobe PDF
|
378.08 kB | Adobe PDF | |
0401136.pdf
accesso aperto
Tipologia:
Accepted version (post-print)
Licenza:
Solo Lettura
Dimensione
450.42 kB
Formato
Adobe PDF
|
450.42 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.