We construct embedded Willmore tori with small area constra int in Riemannian three-manifolds under some curvature condition used to prevent M ̈obius dege neration. The construction relies on a Lyapunov-Schmidt reduction; to this aim we establish new ge ometric expansions of exponentiated small symmetric Clifford tori and analyze the sharp asymptot ic behavior of degenerating tori under the action of the M ̈obius group. In this first work we prove two existence results by minimizing or maximizing a suitable reduced functional, in particular we obtain embedded area-constrained Willmore tori (or, equivalently, toroidal critical points of the Hawking mass under area-constraint) in compact 3-manifolds with constant scalar curvature and i n the double Schwarzschild space. In a forthcoming paper new existence theorems will be achieved v ia Morse theory.

Embedded area-constrained Willmore tori of small area in Riemannian three-manifolds I: Minimization

MALCHIODI, ANDREA;
2017

Abstract

We construct embedded Willmore tori with small area constra int in Riemannian three-manifolds under some curvature condition used to prevent M ̈obius dege neration. The construction relies on a Lyapunov-Schmidt reduction; to this aim we establish new ge ometric expansions of exponentiated small symmetric Clifford tori and analyze the sharp asymptot ic behavior of degenerating tori under the action of the M ̈obius group. In this first work we prove two existence results by minimizing or maximizing a suitable reduced functional, in particular we obtain embedded area-constrained Willmore tori (or, equivalently, toroidal critical points of the Hawking mass under area-constraint) in compact 3-manifolds with constant scalar curvature and i n the double Schwarzschild space. In a forthcoming paper new existence theorems will be achieved v ia Morse theory.
2017
Settore MAT/05 - Analisi Matematica
Willmore functional, Willmore tori, Hawking mass, nonlinear fourth order partial differential equations, Lyapunov-Schmidt reduction
File in questo prodotto:
File Dimensione Formato  
IMM-PLMS.pdf

Accesso chiuso

Descrizione: IMM-PLMS
Tipologia: Published version
Licenza: Non pubblico
Dimensione 571.54 kB
Formato Adobe PDF
571.54 kB Adobe PDF   Richiedi una copia
IMM-PLMS-PP.pdf

accesso aperto

Tipologia: Accepted version (post-print)
Licenza: Creative Commons
Dimensione 486.48 kB
Formato Adobe PDF
486.48 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/56325
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
  • OpenAlex ND
social impact