We construct many new topological types of compact G2-manifolds, that is, Riemannian 7-manifolds with holonomy group G2. To achieve this we extend the twisted connected sum construction first developed by Kovalev and apply it to the large class of asymptotically cylindrical Calabi-Yau 3-folds built from semi-Fano 3-folds constructed previously by the authors. In many cases we determine the diffeomorphism type of the underlying smooth 7-manifolds completely; we find that many 2-connected 7-manifolds can be realized as twisted connected sums in a variety of ways, raising questions about the global structure of the moduli space of G2-metrics. Many of the G2-manifolds we construct contain compact rigid associative 3-folds, which play an important role in the higher-dimensional enumerative geometry (gauge theory/ calibrated submanifolds) approach to defining deformation invariants of G2-metrics. By varying the semi-Fanos used to build different G2-metrics on the same 7-manifold we can change the number of rigid associative 3-folds we produce.
G_2-manifolds and associative submanifolds via semi-Fano 3-folds
PACINI, TOMMASO
2015
Abstract
We construct many new topological types of compact G2-manifolds, that is, Riemannian 7-manifolds with holonomy group G2. To achieve this we extend the twisted connected sum construction first developed by Kovalev and apply it to the large class of asymptotically cylindrical Calabi-Yau 3-folds built from semi-Fano 3-folds constructed previously by the authors. In many cases we determine the diffeomorphism type of the underlying smooth 7-manifolds completely; we find that many 2-connected 7-manifolds can be realized as twisted connected sums in a variety of ways, raising questions about the global structure of the moduli space of G2-metrics. Many of the G2-manifolds we construct contain compact rigid associative 3-folds, which play an important role in the higher-dimensional enumerative geometry (gauge theory/ calibrated submanifolds) approach to defining deformation invariants of G2-metrics. By varying the semi-Fanos used to build different G2-metrics on the same 7-manifold we can change the number of rigid associative 3-folds we produce.File | Dimensione | Formato | |
---|---|---|---|
G2_duke.pdf
Accesso chiuso
Tipologia:
Published version
Licenza:
Non pubblico
Dimensione
1.04 MB
Formato
Adobe PDF
|
1.04 MB | Adobe PDF | Richiedi una copia |
11384_56880.pdf
accesso aperto
Tipologia:
Submitted version (pre-print)
Licenza:
Solo Lettura
Dimensione
831.68 kB
Formato
Adobe PDF
|
831.68 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.