We consider a Toda system of Liouville equations defined on a compact surface which arises as a model for non-abelian Chern-Simons vortices. For the first time the range of parameters $ ho_1 in (4kpi , 4(k+1)pi)$, $k in mathbb{N}$, $ ho_2 in (4pi, 8pi )$ is studied with a variational approach on surfaces with arbitrary genus. We provide a general existence result by means of a new improved Moser-Trudinger type inequality and introducing a topological join construction in order to describe the interaction of the two components.

A topological join construction and the Toda system on compact surfaces of arbitrary genus

MALCHIODI, ANDREA
2015

Abstract

We consider a Toda system of Liouville equations defined on a compact surface which arises as a model for non-abelian Chern-Simons vortices. For the first time the range of parameters $ ho_1 in (4kpi , 4(k+1)pi)$, $k in mathbb{N}$, $ ho_2 in (4pi, 8pi )$ is studied with a variational approach on surfaces with arbitrary genus. We provide a general existence result by means of a new improved Moser-Trudinger type inequality and introducing a topological join construction in order to describe the interaction of the two components.
2015
Settore MAT/05 - Analisi Matematica
Geometric PDEs, Variational Methods, Min-max Schemes
File in questo prodotto:
File Dimensione Formato  
JKM-APDE.pdf

Accesso chiuso

Descrizione: JKM-APDE
Tipologia: Published version
Licenza: Non pubblico
Dimensione 972.46 kB
Formato Adobe PDF
972.46 kB Adobe PDF   Richiedi una copia
apde-v8-n8-p04-p.pdf

Accesso chiuso

Descrizione: BJMR-AIM-PP
Tipologia: Published version
Licenza: Non pubblico
Dimensione 1.49 MB
Formato Adobe PDF
1.49 MB Adobe PDF   Richiedi una copia
11384_57120.pdf

accesso aperto

Tipologia: Accepted version (post-print)
Licenza: Creative Commons
Dimensione 971.25 kB
Formato Adobe PDF
971.25 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/57120
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 19
  • OpenAlex ND
social impact