We consider a Toda system of Liouville equations defined on a compact surface which arises as a model for non-abelian Chern-Simons vortices. For the first time the range of parameters $ ho_1 in (4kpi , 4(k+1)pi)$, $k in mathbb{N}$, $ ho_2 in (4pi, 8pi )$ is studied with a variational approach on surfaces with arbitrary genus. We provide a general existence result by means of a new improved Moser-Trudinger type inequality and introducing a topological join construction in order to describe the interaction of the two components.
A topological join construction and the Toda system on compact surfaces of arbitrary genus
MALCHIODI, ANDREA
2015
Abstract
We consider a Toda system of Liouville equations defined on a compact surface which arises as a model for non-abelian Chern-Simons vortices. For the first time the range of parameters $ ho_1 in (4kpi , 4(k+1)pi)$, $k in mathbb{N}$, $ ho_2 in (4pi, 8pi )$ is studied with a variational approach on surfaces with arbitrary genus. We provide a general existence result by means of a new improved Moser-Trudinger type inequality and introducing a topological join construction in order to describe the interaction of the two components.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
JKM-APDE.pdf
Accesso chiuso
Descrizione: JKM-APDE
Tipologia:
Published version
Licenza:
Non pubblico
Dimensione
972.46 kB
Formato
Adobe PDF
|
972.46 kB | Adobe PDF | Richiedi una copia |
apde-v8-n8-p04-p.pdf
Accesso chiuso
Descrizione: BJMR-AIM-PP
Tipologia:
Published version
Licenza:
Non pubblico
Dimensione
1.49 MB
Formato
Adobe PDF
|
1.49 MB | Adobe PDF | Richiedi una copia |
11384_57120.pdf
accesso aperto
Tipologia:
Accepted version (post-print)
Licenza:
Creative Commons
Dimensione
971.25 kB
Formato
Adobe PDF
|
971.25 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.