We develop the theory of twisted stable maps into a tame Artin stack M. We show that the stacks K(g,n)(M) of twisted stable maps are algebraic, and proper and quasi-finite over the corresponding stacks K(g,n)(M) of stable maps of the coarse moduli space M of M. In the special case where M = BC, the classifying stack of a linearly reductive group scheme G, we show that K(g,n)(BG) -> (M) over bar (g,n) is a flat morphism with local complete intersection fibers.
Twisted stable maps to tame Artin stacks
VISTOLI, ANGELO
2011
Abstract
We develop the theory of twisted stable maps into a tame Artin stack M. We show that the stacks K(g,n)(M) of twisted stable maps are algebraic, and proper and quasi-finite over the corresponding stacks K(g,n)(M) of stable maps of the coarse moduli space M of M. In the special case where M = BC, the classifying stack of a linearly reductive group scheme G, we show that K(g,n)(BG) -> (M) over bar (g,n) is a flat morphism with local complete intersection fibers.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
twisted-tame01apr08.pdf
accesso aperto
Tipologia:
Accepted version (post-print)
Licenza:
Creative Commons
Dimensione
605.14 kB
Formato
Adobe PDF
|
605.14 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.