In prior work [4] of the first two authors with Savaré, a new Riemannian notion of lower bound for Ricci curvature in the class of metric measure spaces (X,d,m) was introduced, and the corresponding class of spaces denoted by RCD(K,∞). This notion relates the CD(K,N) theory of Sturm and Lott-Villani, in the case N = ∞, to the Bakry-Emery approach. In [4] the RCD(K,∞) property is defined in three equivalent ways and several properties of RCD(K, ∞) spaces, including the regularization properties of the heat flow, the connections with the theory of Dirichlet forms and the stability under tensor products, are provided. In [4] only finite reference measures m have been considered. The goal of this paper is twofold: on one side we extend these results to general σ-finite spaces, on the other we remove a technical assumption appeared in [4] concerning a strengthening of the CD(K,∞) condition. This more general class of spaces includes Euclidean spaces endowed with Lebesgue measure, complete noncompact Riemannian manifolds with bounded geometry and the pointed metric measure limits of manifolds with lower Ricci curvature bounds.
Riemannian Ricci curvature lower bounds in metric measure spaces with σ-finite measure
AMBROSIO, Luigi;
2015
Abstract
In prior work [4] of the first two authors with Savaré, a new Riemannian notion of lower bound for Ricci curvature in the class of metric measure spaces (X,d,m) was introduced, and the corresponding class of spaces denoted by RCD(K,∞). This notion relates the CD(K,N) theory of Sturm and Lott-Villani, in the case N = ∞, to the Bakry-Emery approach. In [4] the RCD(K,∞) property is defined in three equivalent ways and several properties of RCD(K, ∞) spaces, including the regularization properties of the heat flow, the connections with the theory of Dirichlet forms and the stability under tensor products, are provided. In [4] only finite reference measures m have been considered. The goal of this paper is twofold: on one side we extend these results to general σ-finite spaces, on the other we remove a technical assumption appeared in [4] concerning a strengthening of the CD(K,∞) condition. This more general class of spaces includes Euclidean spaces endowed with Lebesgue measure, complete noncompact Riemannian manifolds with bounded geometry and the pointed metric measure limits of manifolds with lower Ricci curvature bounds.File | Dimensione | Formato | |
---|---|---|---|
Sigmafinite_12_Feb_2013.pdf
accesso aperto
Tipologia:
Submitted version (pre-print)
Licenza:
Creative Commons
Dimensione
637.26 kB
Formato
Adobe PDF
|
637.26 kB | Adobe PDF | |
Transactions_AMS_2015.pdf
Accesso chiuso
Tipologia:
Published version
Licenza:
Non pubblico
Dimensione
539.34 kB
Formato
Adobe PDF
|
539.34 kB | Adobe PDF | Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.