In this paper we review many aspects of the well-posedness theory for the Cauchy problem for the continuity and transport equations and for the ordinary differential equation (ODE). In this framework, we deal with velocity fields that are not smooth, but enjoy suitable 'weak differentiability' assumptions. We first explore the connection between the partial differential equation (PDE) and the ODE in a very general non-smooth setting. Then we address the renormalization property for the PDE and prove that such a property holds for Sobolev velocity fields and for bounded variation velocity fields. Finally, we present an approach to the ODE theory based on quantitative estimates.

Continuity equation and ODE flows with non-smooth velocity

AMBROSIO, Luigi;
2014

Abstract

In this paper we review many aspects of the well-posedness theory for the Cauchy problem for the continuity and transport equations and for the ordinary differential equation (ODE). In this framework, we deal with velocity fields that are not smooth, but enjoy suitable 'weak differentiability' assumptions. We first explore the connection between the partial differential equation (PDE) and the ODE in a very general non-smooth setting. Then we address the renormalization property for the PDE and prove that such a property holds for Sobolev velocity fields and for bounded variation velocity fields. Finally, we present an approach to the ODE theory based on quantitative estimates.
File in questo prodotto:
File Dimensione Formato  
Edinburghtext.pdf

accesso aperto

Tipologia: Submitted version (pre-print)
Licenza: Creative commons
Dimensione 507.13 kB
Formato Adobe PDF
507.13 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11384/57342
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 70
  • ???jsp.display-item.citation.isi??? 69
social impact