In this paper we make a survey of some recent developments of the theory of Sobolev spaces W1,q(X, d, m), 1 < q < ∞, in metric measure spaces (X, d, m). In the final part of the paper we provide a new proof of the reflexivity of the Sobolev space based on Γ-convergence; this result extends Cheeger’s work because no Poincar´e inequality is needed and the measure-theoretic doubling property is weakened to the metric doubling property of the support of m. We also discuss the lower semicontinuity of the slope of Lipschitz functions and some open problems.

Sobolev spaces in metric measure spaces: reflexivity and lower semicontinuity of slope

AMBROSIO, Luigi;COLOMBO, MARIA;DI MARINO, SIMONE
2015

Abstract

In this paper we make a survey of some recent developments of the theory of Sobolev spaces W1,q(X, d, m), 1 < q < ∞, in metric measure spaces (X, d, m). In the final part of the paper we provide a new proof of the reflexivity of the Sobolev space based on Γ-convergence; this result extends Cheeger’s work because no Poincar´e inequality is needed and the measure-theoretic doubling property is weakened to the metric doubling property of the support of m. We also discuss the lower semicontinuity of the slope of Lipschitz functions and some open problems.
Settore MAT/05 - Analisi Matematica
File in questo prodotto:
File Dimensione Formato  
Lsc_Cheeger_5.pdf

accesso aperto

Descrizione: Preprint sottoposto alla pubblicazione
Tipologia: Submitted version (pre-print)
Licenza: Accesso gratuito (sola lettura)
Dimensione 508.47 kB
Formato Adobe PDF
508.47 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11384/57900
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 33
social impact