In order to look for a well-behaved counterpart to Dolbeault cohomology in D-complex geometry, we study the de Rham cohomology of an almost D-complex manifold and its subgroups made up of the classes admitting invariant, respectively anti-invariant, representatives with respect to the almost D-complex structure, miming the theory introduced by Li and Zhang (2009) in [20] for almost complex manifolds. In particular, we prove that, on a 4-dimensional D-complex nilmanifold, such subgroups provide a decomposition at the level of the real second de Rham cohomology group. Moreover, we study deformations of D-complex structures, showing in particular that admitting D-Kähler structures is not a stable property under small deformations.

Cohomology of D-complex manifolds

ANGELLA, DANIELE
;
2012

Abstract

In order to look for a well-behaved counterpart to Dolbeault cohomology in D-complex geometry, we study the de Rham cohomology of an almost D-complex manifold and its subgroups made up of the classes admitting invariant, respectively anti-invariant, representatives with respect to the almost D-complex structure, miming the theory introduced by Li and Zhang (2009) in [20] for almost complex manifolds. In particular, we prove that, on a 4-dimensional D-complex nilmanifold, such subgroups provide a decomposition at the level of the real second de Rham cohomology group. Moreover, we study deformations of D-complex structures, showing in particular that admitting D-Kähler structures is not a stable property under small deformations.
2012
Settore MAT/03 - Geometria
Para-complex structure; D-complex structure; D-Kähler; Nilmanifold; Cohomology; Deformation
File in questo prodotto:
File Dimensione Formato  
angella-rossi.pdf

Accesso chiuso

Tipologia: Published version
Licenza: Non pubblico
Dimensione 267.32 kB
Formato Adobe PDF
267.32 kB Adobe PDF   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/58301
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
  • OpenAlex ND
social impact