Agents' heterogeneity is recognized as a driver mechanism for the persistence of financial volatility. We focus on the multiplicity of investment strategies' horizons, we embed this concept in a continuous time stochastic volatility framework and prove that a parsimonious, two-scale version effectively captures the long memory as measured from the real data. Since estimating parameters in a stochastic volatility model is challenging, we introduce a robust methodology based on the Generalized Method of Moments supported by a heuristic selection of the orthogonal conditions. In addition to the volatility clustering, the estimated model also captures other relevant stylized facts, emerging as a minimal but realistic and complete framework for modelling financial time series.
Stochastic Volatility with Heterogeneous Time Scales
BORMETTI, GIACOMO
2015
Abstract
Agents' heterogeneity is recognized as a driver mechanism for the persistence of financial volatility. We focus on the multiplicity of investment strategies' horizons, we embed this concept in a continuous time stochastic volatility framework and prove that a parsimonious, two-scale version effectively captures the long memory as measured from the real data. Since estimating parameters in a stochastic volatility model is challenging, we introduce a robust methodology based on the Generalized Method of Moments supported by a heuristic selection of the orthogonal conditions. In addition to the volatility clustering, the estimated model also captures other relevant stylized facts, emerging as a minimal but realistic and complete framework for modelling financial time series.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.