An organic material thin layer can be used to resonantly absorb light and nonradiatively transfer excitation to an adjacent inorganic quantum well the optical nonlinearities of which can in this way be turned on more efficiently than by direct optical pumping. We theoretically consider this process in a hybrid structure based on crystalline tetracene in which the singlet exciton energy is close to twice the one of a triplet exciton and thermally activated singlet exciton fission into two triplets can be efficient. We investigate how the temperature dependence of the singlet exciton diffusion length affects the functional properties of such hybrid organic-inorganic nanostructures based on tetracene. We show how temperature activated fission opens a new possibility to turn on and off the indirect pumping due to energy transfer from the organic into the inorganic subsystem.
Singlets and triplets in hybrid nanodevices
LA ROCCA, Giuseppe Carlo
2014
Abstract
An organic material thin layer can be used to resonantly absorb light and nonradiatively transfer excitation to an adjacent inorganic quantum well the optical nonlinearities of which can in this way be turned on more efficiently than by direct optical pumping. We theoretically consider this process in a hybrid structure based on crystalline tetracene in which the singlet exciton energy is close to twice the one of a triplet exciton and thermally activated singlet exciton fission into two triplets can be efficient. We investigate how the temperature dependence of the singlet exciton diffusion length affects the functional properties of such hybrid organic-inorganic nanostructures based on tetracene. We show how temperature activated fission opens a new possibility to turn on and off the indirect pumping due to energy transfer from the organic into the inorganic subsystem.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.