The thermal and fragmentation properties of star forming clouds have important consequences on the corresponding characteristic stellar mass. The initial composition of the gas within these clouds is a record of the nucleosynthetic products of previous stellar generations. In this paper, we present a model for the evolution of star forming clouds enriched by metals and dust from the first supernovae (SNe), resulting from the explosions of metal-free progenitors with masses in the range 12-30Msolar and 140-260Msolar. Using a self-consistent approach, we show that: (i) metals depleted on to dust grains play a fundamental role, enabling fragmentation to solar or subsolar mass scales already at metallicities Zcr = 10-6Zsolar (ii) even at metallicities as high as 10-2Zsolar, metals diffused in the gas phase lead to fragment mass scales which are >~100Msolar (iii) C atoms are strongly depleted on to amorphous carbon grains and CO molecules so that CII plays a minor role in gas cooling, leaving OI as the main gas-phase cooling agent in low-metallicity clouds. These conclusions hold independently of the assumed SN progenitors and suggest that the onset of low-mass star formation is conditioned to the presence of dust in the parent clouds.

Fragmentation of star-forming clouds enriched with the first dust

FERRARA, A
2006

Abstract

The thermal and fragmentation properties of star forming clouds have important consequences on the corresponding characteristic stellar mass. The initial composition of the gas within these clouds is a record of the nucleosynthetic products of previous stellar generations. In this paper, we present a model for the evolution of star forming clouds enriched by metals and dust from the first supernovae (SNe), resulting from the explosions of metal-free progenitors with masses in the range 12-30Msolar and 140-260Msolar. Using a self-consistent approach, we show that: (i) metals depleted on to dust grains play a fundamental role, enabling fragmentation to solar or subsolar mass scales already at metallicities Zcr = 10-6Zsolar (ii) even at metallicities as high as 10-2Zsolar, metals diffused in the gas phase lead to fragment mass scales which are >~100Msolar (iii) C atoms are strongly depleted on to amorphous carbon grains and CO molecules so that CII plays a minor role in gas cooling, leaving OI as the main gas-phase cooling agent in low-metallicity clouds. These conclusions hold independently of the assumed SN progenitors and suggest that the onset of low-mass star formation is conditioned to the presence of dust in the parent clouds.
2006
Settore FIS/05 - Astronomia e Astrofisica
Settore PHYS-05/A - Astrofisica, cosmologia e scienza dello spazio
stars: formation; supernovae: general; galaxies: evolution; galaxies: stellar content; cosmology: theory; ISM: abundances; dust; extinction
File in questo prodotto:
File Dimensione Formato  
mnras0369-1437.pdf

accesso aperto

Tipologia: Published version
Licenza: Licenza OA dell'editore
Dimensione 320.91 kB
Formato Adobe PDF
320.91 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/5897
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 276
  • ???jsp.display-item.citation.isi??? 270
  • OpenAlex ND
social impact